Стационарный пуассоновский поток отказов. Процесс пуассона Смотреть что такое "пуассоновский поток" в других словарях

Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины с нормальным законом распределения в прикладной теории вероятностей. Такое положение объясняется тем обстоятельством, что в теории потоков, так же как и в теории случайных величин, имеется предельная теорема , согласно которой сумма большого числа независимых потоков с любым законом распределения приближается к простейшему потоку с ростом числа слагаемых потоков.

Стационарным пуассоновским (простейшим) называется поток, обладающий тремя свойствами:ординарностью ,отсутствием последействия истационарностью .

Распределение событий на малом интервале времени

По определению, интенсивностью потока называется предел
, так как простейший поток стационарен, то для него
.

Стационарность потока и отсутствие последействия исключают зависимость вероятности появления событий на интервале
как от расположения этого интервала на оси времени, так и от событий ему предшествующих. Поэтому
.

Для любого промежутка времени имеем . При устремлении
всеми членами правой части этой формулы, за исключением первого, можно пренебречь, т.к. в силу ординарности потока событий эти величины пренебрежимо малы по сравнению с
:

.

С учетом изложенного преобразуем исходное выражение для интенсивности потока:

.

Отсюда имеем равенство
, т.е. вероятность появления одного события на малом интервале времени пропорциональна этому интервалу с коэффициентом.

Очевидно, что
. Следовательно,
, откуда имеем
- вероятность непоявления ни одного события на малом интервале времени
.

Распределение событий в пуассоновском потоке

Найдем выражение
, где
- вероятность того, что на интервале
произойдетсобытий. Это событие произойдет в одном из двух взаимоисключающих случаях:

По теореме сложения вероятностей несовместных событий имеем вероятность наступления ситуации 1 или 2:

Откуда . Устремив
, получим
.

Определим аналогичное соотношение для
. Чтобы событие на интервале
не наступило ни одного раза, необходимо и достаточно, чтобы оно наступило0 раз в интервалеи0 раз - в
. Вероятность этого события равна. Откуда аналогично получим
.

Таким образом, пуассоновский поток событий описывается системой линейных дифференциальных уравнений

,

с очевидными начальными условиями .

Из первого уравнения получаем
, из начальных условий имеем
, откудас = 1 . Окончательно
.

Таким образом, для пуассоновского потока вероятность
отсутствия событий на любом интервале длинойопределяется экспоненциальной зависимостью. Для решения полной системы уравнений используем преобразование Лапласа. Имеем,

откуда
;
и далее
;
; ...
.

Взяв обратное преобразование Лапласа, с помощью таблиц получим
, т.е. распределение Пуассона.

Таким образом, простейший поток подчиняется закону распределения Пуассона, для которого математическое ожидание и дисперсия соответственно равны
.

Распределение интервалов между событиями

Найдем закон распределения интервалов времени между событиями для простейшего потока. Рассмотрим случайную величину - промежуток времени между двумя произвольными соседними событиями в простейшем потоке. Требуется найти функцию распределения
.

Рассмотрим противоположное событие
. Это вероятность того, что, начиная с некоторого момента появления события, за времяне появится больше ни одного события. Так как поток без последействия, то тот факт, что событие появилось в момент , не должен оказать никакого влияния на поведение потока в дальнейшем. Поэтому вероятность
, откуда
и плотность распределения вероятности
.

Такой закон распределения называется показательным (экспоненциальным) с параметром. Найдем математическое ожидание и дисперсиюэтого процесса:

;

Показательный закон обладает замечательным свойством: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка
(он будет таким же, как закон распределения промежутка).

Докажем это свойство. Пусть
- вероятность того, что обслуживание, продолжавшееся(с), еще продлится не менее(с): т.е. на интервале времениa + t не произойдет ни одного события. При показательном законе распределения времени обслуживания
.

По теореме о произведении вероятностей событий . При показательном законе;
и, следовательно,
, т.е. при показательном законе времени обслуживания закон распределения оставшейся части времени обслуживания не зависит от того, сколько времени уже длилось обслуживание. Можно доказать, что показательный закон единственный , для которого справедливо это свойство.

Рассмотренное свойство , по существу, представляет другую формулировку свойстваотсутствия последействия .

Рассмотрим некоторую физическую систему S с дискретными состояниями которая переходит из состояния в состояние под влиянием каких-то случайных событий, например, вызовы на телефонной станции, выходы строя (отказы) элементов аппаратуры, выстрелы, направленные по цели и т. д.

Будем себе это представлять так, будто события, переводящие систему из состояния в состояние, представляют собой какие-то потоки событий (потоки вызовов, потоки отказов, потоки выстрелов и т. д.).

Пусть система S с графом состояний, показанным на рис. 4.27, в момент t находится в состоянии S; и может перейти из него в состояние под влиянием какого-то пуассоновского потока событий с интенсивностью как только появляется первое событие этого потока, система мгновенно переходит (перескакивает) из S в Как мы знаем, вероятность этого перехода за элементарный промежуток времени (элемент вероятности перехода) равна . Таким образом, плотность вероятности перехода в непрерывной цепи Маркова представляет собой не что иное, как интенсивность потока событий, переводящего систему по соответствующей стрелке.

Если все потоки событий, переводящие систему S из состояния в состояние, пуассоновские (стационарные или нестационарные - безразлично), то процесс, протекающий в системе, будет марковским. Действительно, пуассоновский поток обладает отсутствием последействия, поэтому, при заданном состоянии системы в данный момент, ее переходы в другие состояния в будущем обусловлены только появлением каких-то событий в пуассоновских потоках, а вероятности появления этих событий не зависят от «предыстории» процесса.

В дальнейшем, рассматривая марковские процессы в системах с дискретными состояниями и непрерывным временем (непрерывные марковские цепи), нам удобно будет во всех случаях рассматривать переходы системы из состояния в состояние как происходящие под влиянием каких-то потоков событий, хотя бы в действительности эти события были единичными. Например, работающее техническое устройство мы будем рассматривать как находящееся под действием потока отказов, хотя фактически оно может отказать только один раз. Действительно, если устройство отказывает в тот момент, когда приходит первое событие потока, то совершенно все равно - продолжается после этого поток отказов или же прекращается: судьба устройства от этого уже не зависит. Для нас же будет удобнее иметь дело именно с потоками событий.

Итак, рассматривается система S, в которой переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенными интенсивностями. Проставим эти интенсивности (плотности вероятностей переходов) на графе состояний системы у соответствующих стрелок.

Получим размеченный граф состояний (рис. 4.27); по которому, пользуясь правилом, сформулированным в § 3, можно сразу записать дифференциальные уравнения Колмогорова для вероятностей состояний.

Пример 1. Техническая система S состоит из двух узлов: I и II; каждый из них независимо от другого может отказывать (выходить из строя). Поток отказов первого узла - пуассоновский, с интенсивностью второго - также пуассоновский, с интенсивностью Каждый узел сразу после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений (окончаний ремонта ремонтируемого узла) для обоих узлов - пуассоновский с интенсивностью К.

Составить граф состояний системы и написать уравнения Колмогорова для вероятностей состояний. Определить, при каких начальных условиях нужно решать эти уравнения, если в начальный момент система работает исправно.

Решение. Состояния системы:

Оба узла неправды,

Первый узел ремонтируется, второй исправен,

Первый узел исправен, второй ремонтируется,

Оба узла ремонтируются.

Размеченный граф состояний системы показан на рис. 4.28.

Интенсивности потоков событий на рис. 4.28 проставлены из следующих соображений. Если система S находится в состоянии то на нее действуют два потока событий: поток неисправностей узла I с интенсивностью X, переводящий ее в состояние и поток неисправностей узла II с интенсивностью переводящий ее в Пусть теперь система находится в состоянии (узел I ремонтируется, узел II - исправен). Из этого состояния система может, во-первых, вернуться в (это происходит под действием потока восстановлений с интенсивностью ); во-вторых, - перейти в состояние (когда ремонт узла I еще не закончен, а узел II тем временем вышел из строя); этот переход происходит под действием потока отказов узла II с интенсивностью Интенсивности потоков у остальных стрелок проставляются аналогично.

Обозначая вероятности состояний и пользуясь правилом, сформулированным в § 3, запишем уравнения Колмогорова для вероятностей состояний:

Начальные условия, при которых нужно решать эту систему: при

Заметим, что, пользуясь условием

можно было бы уменьшить число уравнений на одно. Действительно, любую из вероятностей можно выразить через остальные и подставить в уравнения (6.1), а уравнение, содержащее в левой части производную чтой вероятности - отбросить.

Заметим, кроме того, что уравнения (6.1) справедливы как для постоянных интенсивностей пуассоновских потоков X, так и для переменных:

Пример 2. Группа в составе пяти самолетов в строю «колонна» (рис. 4.29) совершает налет на территорию противника. Передний самолет (ведущий) является постановщиком помех; до тех пор, пока он не сбит, идущие за ним самолеты не могут быть обнаружены и атакованы средствами ПВО противника. Атакам подвергается только постановщик помех. Поток атак - пуассоновский, с интенсивностью X (атак/час). В результате атаки постановщик помех поражается с вероятностью р.

Если постановщик помех поражен (сбит), то следующие за ним самолеты обнаруживаются и подвергаются атакам ПВО; на каждый из них (до тех пор, пока он не поражен) направляется пуассоновский поток атак с интенсивностью X; каждой атакой самолет поражается с вероятностью р. Когда самолет поражен, атаки по нему прекращаются, но на другие самолеты не переносятся.

Написать уравнения Колмогорова для вероятностей состояний системы и указать начальные условия.

Решение. Будем нумеровать состояния системы соответственно числу сохранившихся самолетов в группе:

Все самолеты целы;

Постановщик помех сбит, остальные самолеты целы;

Постановщик помех и один бомбардировщик сбиты, остальные самолеты целы;

Постановщик помех и два бомбардировщика сбиты, остальные самолеты целы;

Постановщик помех и три бомбардировщика сбиты, один самолет цел;

Все самолеты сбиты.

Состояния мы отличаем друг от друга по числу сохранившихся бомбардировщиков, а не по тому, какой именно из них сохранился, так как все бомбардировщики по условиям задачи равноценны - атакуются с одинаковой интенсивностью и поражаются с одинаковой вероятностью.

Граф состояний системы показан на рис. 4 30. Чтобы разметить этот граф, определим интенсивности потоков событий, переводящих систему из состояния в состояние.

Из состояния систему переводит поток поражающих (или «успешных») атак, т. е. тех атак, которые приводят к поражению постановщика (разумеется, если он раньше не был поражен).

Интенсивность потока атак равна X, но не все они - поражающие: каждая из них оказывается поражающей только с вероятностью . Очевидно, интенсивность потока поражающих атак равна эта интенсивность и проставлена в качестве у первой слева стрелки на графе (рис. 4.30).

Займемся следующей стрелкой и найдем интенсивность Система находится в состоянии т. е., целы и могут быть атакованы четыре самолета. Она перейдет в состояние за время если за это время какой-нибудь из самолетов (все равно, какой) будет сбит. Найдем вероятность противоположного события - за время ни один самолет не будет сбит:

Здесь отброшены члены высшего порядка малости относительно Вычитая эту вероятность из единицы, получим вероятность перехода из за время (элемент вероятности перехода):

что и проставлено у второй слева стрелки. Заметим, что интенсивность этого потока событий просто равна сумме интенсивностей потоков поражающих атак, направленных на отдельные самолеты Рассуждая наглядно, можно получить этот вывод следующим образом: система S в состоянии состоит из четырех самолетов; на каждый из них действует поток поражающих атак с интенсивностью значит на систему в целом действует суммарный поток поражающих атак с интенсивностью

Решение. Размеченный граф состояний показан на рис. 4.31.

Уравнения Колмогорова!

Начальные условия же, что и в примере 2.

Отметим, что в данном параграфе мы только выписывали дифференциальные уравнения для вероятностей состояний, но не занимались решением этих уравнений.

По этому поводу можно заметить следующее. Уравнения для вероятностей состояний представляют собой линейные дифференциальные уравнения с постоянными или переменными коэффициентами - в зависимости от того, постоянны или переменны интенсивности потоков событий, переводящих систему из состояния в состояние.

Система нескольких линейных дифференциальных уравнений такого типа только в редких случаях может быть проинтегрирована в квадратурах: обычно такую систему приходится решать численно - либо вручную, либо на аналоговой вычислительной машине (АВМ), либо, наконец, на ЭЦВМ. Все эти способы решения систем дифференциальных уравнений затруднений не доставляют; поэтому самое существенное - уметь записать систему уравнений и сформулировать для нее начальные условия, чем мы и ограничились здесь.


Этот термин используют, как правило, в теории массового обслуживания.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ПУАССОНОВСКИЙ ПОТОК" в других словарях:

    Пуассоновский поток - см. Поток требований (заявок) … Экономико-математический словарь

    То же, что Пуассоновский процесс. Этот термин используют, как правило, в массового обслуживания теории (См. Массового обслуживания теория) … Большая советская энциклопедия

    поток требований - поток заявок входящий поток В теории массового обслуживания последовательность требований или заявок, поступающих на пункт обслуживания (канал, станцию, прибор и т.д.). Они возникают случайно и требуют определенного, обычно заранее точно не… …

    Поток событий последовательность событий, которые наступают в случайные моменты времени. Свойства Свойство стационарности: вероятность появления k событий на любом промежутке времени зависит только от числа k и от длительности t промежутка… … Википедия

    В теории случайных процессов описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью. Содержание 1 Определение 1.1 Простой Пуассоновский процесс … Википедия

    пуассоновский входящий поток - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN exponential arrivals … Справочник технического переводчика

    Случайный процесс X(t).с независимыми приращениями X(t2) X(t1), t2>tl имеющими Пуассона распределение. В однородном П. п. для любых t2 > t1 (1) Коэффициент l>0 наз. интенсивностью пуассоновского процесса X(t). Траектории П. п. X(t).… … Математическая энциклопедия

    Случайный процесс, описывающий моменты наступления 0 Большая советская энциклопедия

    Случайная последовательность моментов времени, в к рые происходят события нек рого потока событий (напр., потока вызовов, приходящих на телефонную станцию), удовлетворяющая условию независимости и одинаковой показательной распределенности… … Математическая энциклопедия

    - (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящие… … Википедия

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока , попадающих на любой участок, распределено по закону Пуассона  


Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий - это поток, обладающий двумя свойствами ординарностью и отсутствием последействия.  

В данном параграфе устанавливается связь между пуассоновскими потоками событий и с непрерывным временем. Показывается, как используется интенсивность пуассоновских стационарных потоков в качестве плотностей вероятностей переходов системы из состояния в состояние при анализе моделей конкретных ситуаций.  

Между пуассоновскими потоками событий и дискретными марковскими процессами с непрерывным временем имеется тесная связь.  

Связь пуассоновских потоков событий с дискретными марковскими процессами с непрерывным временем  

То есть технически, марковскую модель с непрерывным временем построить проще, чем модель с дискретным временем, хотя проблема подчинения пуассоновскому закону распределения всех потоков событий , переводящих элементы системы из состояния в состояние, остается.  

Можно считать, что события, переводящие автомобиль из состояния в состояние, представляют собой потоки событий (например, потоки отказов). Если все потоки событий , переводящие систему (автомобиль) из состояния в состояние, пуассоновские (стационарные или нестационарные), то процесс, протекающий в системе, будет марковским, а плотности вероятности перехода Ху в непрерывной цепи Маркова представляют собой интенсивности потока событий, переводящего систему из состояния Si в состояние Sj. Например, Х03 - интенсивность потока отказов автомобиля, который переводит автомобиль из состояния исправен, работает в состояние находится в ТР.  

Допущения о пуассоновском характере потока событий и о показательном распределении промежутков времени между событиями ценны тем, что позволяют на практике применить мощный аппарат марковских случайных процессов .  

Пуассоновский стационарный (простейший) поток событий  

Пуассоновский стационарным (простейшим) поток событий  

Пуассоновский нестационарный поток событий  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Основное характеристическое свойство нестационарного пуассоновского потока состоит в том, что вероятность наступления определенного числа событий за временной промежуток зависит не только от его длины, но и от момента его начала.  

Одной из основных стохастических характеристик нестационарного пуассоновского потока является дискретная случайная величина X(t т), представляющая собой случайное число событий, наступающих в потоке за промежуток [ t.+t.  

Другой основной стохастической характеристикой нестационарного пуассоновского потока является случайный интервал времени T(tB) между двумя соседними событиями, первое из которых наступило в момент t0.  

Доказательство Вероятность p (t At) того, что система S, находившаяся в момент времени t в состоянии sp за промежуток времени от t до t+Ы перейдет из него в состояние s (см. 4) равна элементу вероятности pfa t) появления события в пуассоновском потоке П.. на элементарном участке от t до +Д (см. Определение 5.11). Но (см. (4.3))  

Система, в которой протекает дискретный марковский процесс с непрерывным временем, перескакивает из одного состояния х в другое xj не самопроизвольно, а под воздействием определенного события, которое мы можем отнести к событиям некоторого пуассоновского потока П.. и считать, таким образом, что переход системы из состояния х в состояние х происходит под воздействием всего потока /L. Привлечение всего потока П.. дает нам возможность рассматривать интенсивность А() этого потока.  

Рассмотрим более подробно случай пуассоновского распределения спроса. Функция затрат будет иметь вид, аналогичный (5.6.18), с заменой интегрирования по х суммированием. Найдем плотность 1> (т) распределения времени дефицита. Распределение времени наступления k -го события пуассоновского потока подчинено закону Эрланга k -го порядка. Дефицит начинается при израсходовании всего запаса S и еще одной единицы, так что  

Общий поток отказов, связанный с попаданием автомобилей исследуемой группы в ТО-2, получается путем наложения (суперпозиции) потоков ТО-2 этих автомобилей. Как показывают расчеты, распределение интервала пробега между событиями в этом потоке подчиняется показательному закону . При этом поток ТО-2 всех исследуемых автомобилей является пуассоновским.  

Образ потока отказов, связанного со списанием автомобиля, является условным. Действительно, если автомобиль отказывает в тот момент, когда происходит первое событие данного потока, то совершенно все равно, продолжается после этого поток отказов или прекращается судьба автомобиля от этого уже не зависит. В случае когда элемент (автомобиль) не подлежит восстановлению, поток отказов является пуассоновским.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых)

Информатика, кибернетика и программирование

Определение Пуассоновского потока. Пуассоновский поток это ординарный поток без последействия. Классической моделью трафика в информационных сетях является Пуассоновский простейший поток. Он характеризуется набором вероятностей Pk поступления k сообщений за временной интервал t: где k=01 число сообщений; λ интенсивность потока.

1. Определение Пуассоновского потока. Свойства.

Пуассоновский поток - это ординарный поток без последействия.

Классической моделью трафика в информационных сетях является Пуассоновский (простейший) поток. Он характеризуется набором вероятностей P(k) поступления k сообщений за временной интервал t:

где k=0,1,… - число сообщений; λ - интенсивность потока.

Заметим, что интервал времени измерения количества сообщений t и интенсивность потока λ являются постоянными величинами.

Семейство Пуассоновских распределений P(k) в зависимости от λ изображено на рис.1. Большее значение λ соответствует более широкому и симметричному графику плотности вероятности.

Рис. 1. Пуассоновские распределения. Плотности вероятностей.

Математическое ожидание (среднее) и дисперсия Пуассоновского потока равны λ t .

Зная вероятность поступления данных за период, можно получить распределение интервала τ между соседними событиями:

Отсюда вывод: пуассоновский поток характеризуется экспоненциальным распределением интервалов между событиями.

Основным свойством пуассоновского потока , обусловливающим его широкое применение при моделировании, является аддитивность: результирующий поток суммы пуассоновских потоков тоже является пуассоновским с суммарной интенсивностью:

При моделировании Пуассоновский поток можно получить мультиплексированием совокупности ON/OFF источников, которые называются Марковскими процессами (рис.2.).

Рис. 2. Получение Пуассоновского распределения

2. СМО с отказами (классическая система Эрланга)

Здесь мы рассмотрим одну из первых по времени, «классических» задач теории массового обслуживания; эта задача возникла из практических нужд телефонии и была решена в 1909 г. датским инженером-математиком А.К. Эрлангом. Задача ставится так: имеется n каналов (линий связи), на которые поступает поток заявок с интенсивностью λ. Поток обслуживаний каждого канала имеет интенсивность μ. Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S 0 , S 1 ,…, S n , где S k – состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения (рис. 3).

Рис. 3. Граф состояний СМО

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью λ. Интенсивность же потока обслуживаний, переводящих систему из любого правого состояния в соседнее левое, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S 2 (два канала заняты), то она может перейти в состояние S 1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживаний будет 2μ . Аналогично суммарный поток обслуживаний, переводящий СМО из состояния S 3 (три канала заняты) в S 2 , будет иметь интенсивность 3μ , т.е. может освободиться любой из трех каналов, и т.д.

В формуле (1) для схемы гибели и размножения получим для предельной вероятности состояния:

(1)

где члены разложения - коэффициенты при p 0 в выражениях для предельных вероятностей p 1 , p 2 ,..., p n .

Заметим, что в формулу (1) интенсивности λ и μ входят не по отдельности, а только в виде отношения μ/λ. Обозначим: μ/λ = p , и будем называть величину ρ приведенной интенсивностью потока заявок или интенсивностью нагрузки канала. Она выражает среднее число заявок, приходящих за среднее время обслуживания одной заявки. Пользуясь этим обозначением, перепишем формулу (1) в виде:

(2)

При этом:

(3)

Формулы (2) и (3) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все n каналов системы будут заняты, т.е.

Отсюда находим относительную пропускную способность – вероятность того, что заявка будет обслужена:

Абсолютную пропускную способность получим, умножая интенсивность потока заявок λ на Q:

(4)

Осталось только найти среднее число занятых каналов k. Эту величину можно было бы найти «впрямую», как математическое ожидание дискретной случайной величины с возможными значениями 0,1,..., n и вероятностями этих значений p 0 , p 1 , …, p n :

Подставляя сюда выражения (3) для p k и выполняя соответствующие преобразования, мы, в конце концов, получили бы формулу для k. Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность A системы есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем μ заявок (в единицу времени), то среднее число занятых каналов:

или, учитывая (4):


А также другие работы, которые могут Вас заинтересовать

58607. Табличные информационные модели 106.5 KB
Предмет усвоения: табличные информационные модели таблица типа объекты-свойства таблица типа объекты-объекты один таблица типа объекты объекты несколько таблица типа объекты свойства объекты. Средства усвоения: Логический анализ: Таблица типа ОС это таблица содержащая информацию...
58610. Семейное право 50.5 KB
Цель урока: дать характеристику основ семейного права РФ и продолжить формирование способностей учащихся к выбору действий и поступков в морально-правовой ситуации в соответствии с нормами семейного законодательства и морали. Задачи урока: формирование системы знаний семейного права...
58612. Менеджмент 33.5 KB
Ход урока. Мы с вами вместе вспомнили о менеджменте его функциях факторах внутренней и внешней среды менеджмента роли коммуникаций Самоанализ урока Анализ структуры. На данном занятии присутствовали все основные этапы прохождения урока.
58613. Темперамент и выбор профессии 60.5 KB
Задачи урока: Образовательная ознакомить учащихся с понятиями тип темперамента характер; Развивающая развить у учащихся интерес к выбору будущей профессии; Воспитательная содействовать воспитанию трудолюбия стремления к выбору будущей профессии...
58615. Урок по рендерингу анимации 3d Max. Экспорт анимации 3d Max в видео 230.5 KB
В разделе Render Output нажимаем кнопку Files и переходим в папку или создаём новую куда будем сохранять получившиеся кадры анимации. Нажимаем кнопку Sve для возврата в окно Render Setup Запускаем визуализацию нажатием на кнопку Render.